Abstract

The objective of this study was to characterize the changes in lignin structure during hydrothermal pretreatment of shrub Tamarix ramosissima. Lignins in residual wood meal were isolated with alkaline ethanol solution and recovered with acid precipitation. A comparison between the recovered lignin fractions with milled wood lignin has been made in terms of yield, purity, gel permeation chromatography, Fourier transform infrared spectroscopy, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 1D 13C and 2D heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopic techniques. Semiquantitative HSQC NMR showed that the relative amounts of β-O-4′ (around 76 % side chains) and resinol type substructures (16 %) of lignins were significantly modified during hydrothermal pretreatment. Py-GC/MS analyses brought direct evidences of these lignin samples with high S/G ratios ranging from 1.7 to 2.6. Moreover, the results indicated that an increase in the severity of the hydrothermal pretreatment enhanced the degradation of lignin unit side chains and the condensation of lignin and decreased the molecular weight of the recovered lignin fractions. This study demonstrated that the combination of autohydrolysis and alkaline ethanol process could potentially turn the recovered lignin fractions into value added products being in accordance with the “biorefinery” concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call