Abstract

The standard assay for the determination of σ(1) receptor affinities of novel compounds is a competitive binding assay using [(3)H]-(+)-pentazocine as radioligand and membrane preparations from guinea pig brain. Herein, a novel competitive binding assay was developed employing the hematopoietic cell line of human multiple myeloma (RPMI 8226), which expresses a large amount of the human σ(1) receptor. Membrane fragments of RPMI 8226 cells were prepared and characterized. A Western blot analysis confirmed the high density of σ(1) receptors in this cell line. Assay conditions were carefully optimized leading to an incubation period of 120 min, an incubation temperature of 37°C, and receptor material for each well was prepared from 300,000 cells. It was shown that a large excess (10 μM) of (+)-pentazocine, haloperidol, and di-o-tolylguanidine provided the same results during determination of the nonspecific binding. Saturation experiments with the radioligand [(3)H]-(+)-pentazocine led to a K(d)-value of 36±0.3 nM and a B(max)-value of 477±7 fmol/mg protein. These data resulted in approximately 122,000 σ(1) binding sites per cell. The assay was validated by using six known σ(1) ligands and eight σ(1) ligands prepared in our lab. The K(i)-values determined with RPMI 8226-derived receptor material are in good accordance with the K(i)-values obtained with guinea pig brain membrane preparations. Compared with guinea pig brain preparations, the RPMI 8226-derived receptor material represents a better standardized receptor material with a high density of human σ(1) receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call