Abstract
Lithium iron phosphate (LiFePO4, LFP) is one of the widely used cathode materials for rechargeable lithium ion batteries. LFP batteries are widely used for electric vehicles and backup power due to their important advantages such as low cost, lifetime, efficiency, and reliability. There are still several technical challenges that need to be addressed: the increase of energy density or further reduction of their final cost. This paper concerned with the characterization of carbon coated LiFePO4 nanopowder cathode materials produced under different conditions by pulse combustion for providing energy to the reactor for the synthesis. The reactor was built according to the principles of the thermoacoustic burner on the basis of the Helmholtz resonator. The investigated nanopowders are synthesized by complete and incomplete combustion and calcined at 700 °C. The obtained samples were characterized by X-ray diffraction, Fourier transform infrared, Raman, and Mössbauer spectroscopy. Observed low-temperature magnetic phase transitions definitively identified the crystal phases. The morphology of samples was controlled by scanning electron microscopy. The aim of this work is to show that it is possible to achieve a desired crystal phase by pulse combustion in a relatively cheap and fast way. The extremely rapid synthesis of almost pure phase material is possible due to the reduction in size of interacting particles and to an enormous number of collisions between them as a result of strong turbulent flow associated with explosive combustion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.