Abstract
During raw sugarcane processing, a significant portion of lost sucrose is attributable to microbial degradation. Sucrose consumption by many bacteria is also linked to the production of exopolysaccharides (EPS) such as dextrans and fructans. These resulting EPS cause operational challenges during raw sugar manufacturing. Here, we report the characterization of EPS from a fructan-forming Gluconobacter japonicus bacterium that we previously isolated from a Louisiana sugarcane factory. The genome sequencing revealed the presence of two encoded levansucrase genes, lsrA and lsrB. One levansucrase, LsrB, was detected in the secreted protein fraction of G. japonicus LASM12 by QTOF LC-MS. The spotting assays indicated that G. japonicus produces EPS using sucrose and raffinose as substrates. The G. japonicus EPS correlated with levan fructan commercial standards by 1H-NMR, and with the characteristic carbohydrate fingerprint region for FTIR spectra, confirming that the G. japonicus EPS is levan fructan. The glycosyl composition and glycosyl linkage analysis revealed a linear β-2,6-fructofuranosyl polysaccharide with occasional (5.7%) β-2,1-fructofuranosyl branches. The gel permeation chromatography of the levan fructan EPS showed two main peaks at 4.5 kDa and 8 kDa and a very minor peak at 500 kDa. G. japonicus was identified as a producer of levan fructan. These findings will be useful for future studies aimed at evaluating the impact of levan fructans on sugar crop processing, which have been historically underestimated in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.