Abstract

An experimental setup and ion diagnostic method for laser-induced fuel removal and decomposition of co-deposited layers on plasma facing components from tokamaks are described. Nd:YAG 3.5 ns pulse laser with a repetition rate of 10 Hz and single-pulse energy of up to 0.8 J at 1.06 μm has been used for irradiation of a graphite limiter tile from the TEXTOR tokamak. Comparative studies have been performed for a pure graphite plate as a reference target. Energy of emitted ions has been measured using a time-of-flight method. Early results show that laser pulses efficiently ablate the co-deposit removing both fuel species and heavy components such as Si, Ni, Cr, Fe and W present in the layers. Surface topography of the irradiated targets is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.