Abstract

Staphylococcus aureus is one of the major pathogens causing foodborne outbreaks and severe infections worldwide. Generally, various physical and chemical treatments have been applied to control S. aureus in the food industry. However, conventional treatments usually affected food quality and often produced toxic compounds. Therefore, bacteriophage (phage), a natural antimicrobial agent, has been suggested as an alternative strategy to control foodborne pathogens including S. aureus. In this study, KMSP1, a bacteriophage infecting S. aureus was isolated from a raw milk sample and characterized. Transmission electron microscopy (TEM) analysis revealed that phage KMSP1 belongs to the Myoviridae family. Phage KMSP1 efficiently inhibited bacterial growth for >28 h post-infection. In addition, phage KMSP1 could infect a broad spectrum of S. aureus strains, including methicillin-resistant S. aureus (MRSA) strains. Whole-genome sequence analysis showed that KMSP1 is a lytic phage with the absence of genes related to lysogen formation, toxin production, and antibiotics resistance, respectively. In the genome of KMSP1, the presence of putative tail lysin containing a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain could be one of the reasons for the effective antimicrobial activity of KMSP1. Furthermore, high stability of phage KMSP1 at temperature ranging from 4 to 55 °C and pH ranging from 5 to 11, suggested its potential use in various food systems. Receptor analysis revealed that KMSP1 utilized cell wall teichoic acid (WTA), one of the major virulence factors of S. aureus, as a host receptor. Application of phage KMSP1 at an MOI of 104 achieved a significant reduction of log 8.8 CFU/mL of viable cell number in pasteurized milk and log 4.3 CFU/cm2 in sliced cheddar cheese after 24 h. Taken together, the strong antimicrobial activity of phage KMSP1 suggested that it could be developed as a biocontrol agent in dairy products to control S. aureus contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call