Abstract

Kinins have an important role in inflammatory cystitis and in animal pathophysiological models, by acting on epithelium, fibroblasts, sensory innervation and smooth muscle. The aim of this study was to characterize the receptors responsible for direct motor responses induced by kinins on human detrusor. Human detrusor cells from biopsies were isolated and maintained in culture. B(1) and B(2) kinin receptors were characterized by means of radioligand and functional experiments (PI accumulation and PGE(2) release). [(3)H]-[desArg(9)]-Lys-BK and [(3)H]-BK saturation studies indicated receptor density (B(max)) and K (d) values of 19 or 113 fmol mg(-1), and 0.16 or 0.11 nM for the B(1) or B(2) receptors, respectively. Inhibition binding studies indicated the selectivity of the B(1) receptor antagonist [desArg(9)Leu(8)]-Lys-BK and of the B(2) receptor antagonists Icatibant and MEN16132. [DesArg(9)]-Lys-BK and BK induced PI accumulation with an EC(50) of 1.6 and 1.4 nM and different maximal responses (E(max) of [desArg(9)]-Lys-BK was 10% of BK). BK also induced prostaglandin E(2) release (EC(50) 2.3 nM), whereas no response was detected with the B(1) receptor agonist. The incubation of detrusor smooth muscle cells with interleukin 1beta (IL-1beta) or tumour necrosis factor-alpha (TNF-alpha) (10 ng ml(-1)) induced a time-dependent increase in radioligand-specific binding, which was greater for the B(1) than for the B(2) receptor. Human detrusor smooth muscle cells in culture retain kinin receptors, and represent a suitable model to investigate the mechanisms and changes that occur under chronic inflammatory conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.