Abstract
We report on laser-induced damage threshold (LIDT) and UV-laser excited defect formation measurements in large aperture KDP crystals developed as doublers and triplers for mega-Joule laser. Measurements of LIDT were performed according to the ISO 11254-2 standard for repetitive pulses with duration ~ 4 ns and repetition rate of 10 Hz. The results for different laser wavelengths (1064, 532 and 355 nm) and polarizations are presented. The largest LIDT was observed for 532 nm pulses and the 1064 nm wavelength had a strong dependence on laser polarization. The LIDT values at 532 nm and 355 nm also depended on the crystal cutting angle, which is different for doublers and triplers. A comparison of LIDT with earlier reported crystal absorptance at different wavelengths is also performed. The UV-laser induced defect formation was investigated by the means of pump-probe technique. The excitation was performed with a single pulse of ns Nd:YAG laser (355 or 266 nm wavelength) and probing with another Nd:YVO<sub>4</sub> laser system (532 nm) operating at 1kHz. This gave us a temporal resolution of 1ms. The transient absorption of defect states relaxed non-exponentially and fully disappeared in ~10 s. A comparison is made between crystal grown by distinct growth methods and between different laser polarizations. An influence of laser conditioning on UV induced defect state formation is also revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.