Abstract

Acetylation of amino acids is important in the molecular biology and biochemistry because they are part of several metabolic pathways. N-acetyl amino acids can form through degradation of N-acetyl proteins or direct acetylation of amino acids by specific enzymes. Acetylation of α-amino acids can be either on the alpha -NH2 or on the side-chain functional group, where both the acetyl products are isomeric and can show different biological roles. Theoretically, all proteinogenic α-amino acids are expected to undergo acetylation and they can be a part of metabolome. Thus, it is essential to detect and identify all the possible acetylated products of α-amino acids for untargeted metabolomics studies. In this study, it is aimed to synthesize and characterize all acetylated products of natural α-amino acids. A total of 20 Nα -acetyl amino acids (1-20), six side-chain acetyl amino acids (21-26), and six diacetyl amino acids (27-32) were synthesized and characterized by liquid chromatography-electrospray ionizationtandem mass spectrometry (LC-ESI-MS/MS). The [M + H]+ ions of all the acetyl amino acids were subjected to MS/MS experiments to obtain their structural information. Apart from the expected loss of (H2 O + CO) (immonium ions), most of the acetyl amino acids specifically showed loss of H2 O and loss of a ketene (C2 H2 O) from [M+H]+ ions. The side-chain acetyl amino acids showed a clear-cut structure specific fragment ions that enabled easy differentiation from their isomeric Nα -acetyl amino acids. The other isomeric/isobaric acetyl amino acids could also be easily distinguished by their MS/MS spectra. The MS/MS of immonium ions of the acetyl amino acids were also studied, and they included characteristic products reflecting the structures of parent Nα -acetyl and side-chain acetyl amino acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call