Abstract

The oomycete, Phytophthora infestans, is a devastating pathogen of potato worldwide. Several genotypes of P. infestans are able to infect other cultivated and weed species of the family Solanaceae and cause symptoms similar to late blight. Changes in P. infestans populations have stimulated investigations to determine if potato strains from new immigrant populations infect nonpotato hosts more often than those from the older population. Expansion of the effective host range may be one of the mechanisms involved in pathogenic changes in natural populations of P. infestans and to determine its significance, it is necessary to establish if the pathogen strains on nonpotato hosts represent distinct genotypes/populations or are freely exchanging with those on potato. This article reports characterization of P. infestans isolates from four solanaceous hosts (black nightshade, hairy nightshade, petunia, and tomato) growing within and around fields of blighted potatoes in four U.S. locations and one U.K. location and their comparison with isolates collected from adjacent infected potatoes. Isolates were characterized for mitochondrial DNA haplotype, mating type, metalaxyl resistance, allozymes of glucose-6-phosphate isomerase and peptidase, and DNA fingerprint with the RG57 probe. Analysis showed close similarity of the petunia, hairy and black nightshade isolates to potato isolates. However, tomatoes from New Jersey and Pennsylvania, respectively, were infected by two distinct and previously unreported pathogen genotoypes, which had quite different fingerprints from P. infestans isolates recovered from nearby infected potatoes. Potato growers should be aware that both weed and cultivated solanaceous species can be infected with P. infestans and may serve as clandestine reservoirs of inoculum. Because some of these plants do not show conspicuous symptoms, they may escape detection and fail to be either removed or treated and so may play a major role in the introduction and spread of pathogens to new locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call