Abstract

Suspensions of sequentially isolated villus and crypt cells were obtained in order to study certain biochemical changes associated with differentiation of epithelial cells in the small intestine of the mouse. Microscopic observation of the various cell fractions reveals that the epithelial cells detach as individual cells or small sheets of epithelium from the tip to the base of the villus, whereas cells in the crypt regions are separated as entire crypt units. The isolated cells retain their ultrastructural integrity as judged by electron miscroscopy. Chemical characterization of the various fractions shows that the total cellular protein content, expressed in activity per cell, remains relatively constant throughout the villus region followed by a noticeable drop in the crypt zone. On the other hand, sharp variations in values of cell DNA content are observed in the crypt zone depending on the reference of activity being used. Activity profiles of several brush border enzymes confirm the biochemical changes that occur during the migration of cells from the crypt to the villus tip, as observed in other species, with maximum activity of sucrase in the mid-villus region, of glucoamylase, trehalase, lactase and maltase in the upper third region, and of alkaline phosphatase at the villus tip. Forty-eight-hour suspension cultures of cell fractions corresponding to cells at the base of the villus and crypt zones show a moderate decrease in protein and enzyme activities to approximately 70% of their original value, with DNA content remaining stable throughout the incubation period. The use of biochemical activities as indicators of cellular integrity during cell culture is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call