Abstract

Backgroudβ-hydroxyacyl-acyl carrier protein dehydratase (FabZ) is an essential component of type II fatty acid biosynthesis (FAS II) pathway in bacteria. It performs dehydration of β-hydroxyacyl-ACP to trans-2-acyl-ACP in the elongation cycle of the FAS II pathway. FabZ is ubiquitously expressed and has uniform distribution, which makes FabZ an excellent target for developing novel drugs against pathogenic bacteria. MethodsWe focused on the biochemical and biophysical characterization of FabZ from drug-resistant pathogen Moraxella catarrhalis (McFabZ). More importantly, we have identified and characterized new inhibitors against McFabZ using biochemical, biophysical and in silico based studies. ResultsWe have identified three isoflavones (daidzein, biochanin A and genistein) as novel inhibitors against McFabZ. Mode of inhibition of these compounds is competitive with IC50 values lie in the range of 6.85μΜ to 27.7μΜ. Conformational changes observed in secondary and tertiary structure marked by a decrease in the helical and the sheet content in McFabZ structure upon inhibitors binding. In addition, thermodynamic data suggest that biochanin A has a strong binding affinity for McFabZ as compare to daidzein and genistein. Molecular docking studies have revealed that these inhibitors are interacting with the active site of McFabZ and making contacts with catalytic and substrate binding tunnel residues. Conclusion and general significanceThree new inhibitors against McFabZ have been identified and characterized. These biochemical and biophysical findings lead to the identification of chemical scaffolds, which can lead to broad-spectrum antimicrobial drugs targeted against FabZ, and modification to existing FabZ inhibitors to improve affinity and potency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.