Abstract

The paper presents the results of studying the influence of silicone polymer pore filler on the macroscopic quasi-static and dynamic compressive behaviour of aluminium foam with irregular open-cell structure. The study is based on a mechanical experimental testing programme, where the deformation mechanism and mechanical energy absorption capacity of aluminium foam with silicone pore filler have been observed for the first time. As plastic yielding is accompanied by significant heat energy dissipation, this study was additionally supported by thermal imaging, which enables visualization of plastification to better understand the deformation process of observed specimens. The influence of specimen size on the behaviour of aluminium foam specimens has also been investigated. The results show that introduction of silicone pore filler considerably increases the energy absorption capacity at almost unchanged densification strain under both quasi-static and dynamic loading conditions. The silicone pore filler also significantly influences the deformation behaviour of aluminium foam specimens, which is manifested in a different stress distribution and a significant transverse deformation with conical plastification front. However, only a minor difference in response of different size specimens has been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.