Abstract

Objective: The aim of the current study was to evaluate the black salsify (Scorzonera hispanica L.) as a potential source of inulin and to characterize the physicochemical properties of isolated polysaccharide.Methods: The carbohydrate content in its roots and leaves was analyzed by high-performance liquid chromatography with refractive index detection (HPLC-RID) method. Microwave-assisted extraction was performed for isolation of inulin from black salsify roots. The obtained polysaccharide was characterized by HPLC-RID method, HPLC size-exclusion chromatography, and Fourier transformed-infrared spectroscopy. Functional properties as swelling capacity, solubility, and water-holding and oil-holding capacities (OHCs) were also evaluated.Results: Black salsify (S. hispanica L.) roots were evaluated as a rich source of inulin (22% dw) and 1-kestose (6.25 g/100 g dw). The isolated inulin (yield 20%) was characterized with average degree of polymerization 17, with polydispersity index (1.04) that was near to medium-chained inulin. This polysaccharide showed better OHC than water-holding capacity, and it was characterized with swelling capacity 0.5 ml/g sample.Conclusion: For the first time, inulin was isolated from black salsify roots. The chemical characterization of inulin reveals the potential of this plant to be used as a valuable source of this polysaccharide for future application in food technology and pharmaceutical industry for dietary fibers, stabilizer, and coating agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.