Abstract

A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interfacial bonding mechanism between the graphene and the superalloy matrix was characterized using optical microscope, scanning electronic microscope, transmission electronic microscope and X-ray tomography. The results revealed that the graphene could be dispersed uniformly inside the matrix of the superalloy, and the bonding interface between graphene and the superalloy showed a rather diffusion instead of abrupt distinction, suggesting that the interface was formed via chemical fusion rather than a mechanical combination. The uniform dispersity of the graphene inside the superalloy matrix could improve the tensile properties significantly, including tensile strength, plasticity and yield strength. The existence of the graphene at the fracture surface further verified that the graphene could increase the effective bearing force of the material during the tensile test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.