Abstract

Many complex networked systems exhibit volatile dynamic interactions among their vertices, whose order and persistence reverberate on the outcome of dynamical processes taking place on them. To quantify and characterize the similarity of the snapshots of a time-varying network—a proxy for the persistence,—we present a study on the persistence of the interactions based on a descriptor named temporality. We use the average value of the temporality, overline{mathcal {T}}, to assess how “special” is a given time-varying network within the configuration space of ordered sequences of snapshots. We analyse the temporality of several empirical networks and find that empirical sequences are much more similar than their randomized counterparts. We study also the effects on overline{mathcal {T}} induced by the (time) resolution at which interactions take place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.