Abstract

We have studied insulin degrading activity (IDA) in cultured human fibroblasts and assessed the effect of various inhibitors of insulin processing on IDA. To evaluate the role of three enzymes of insulin degradation (neutral protease, microsomal glutathione insulin transhydrogenase, and lysosomal acid protease), we subfractionated homogenized fibroblasts into membrane (and nuclei) cytosol, mitochondria, microsomes, and lysosomes. Greater than 90% of IDA was found to be present in the cytosolar fraction containing neutral protease. IDA in intact fibroblasts was completely inhibited by 1 mM N-ethylmaleimide and partially by 0.5 mM dansylcadaverine (75%), 0.5 mM chloroquine (48%), 1 mg/ml bacitracin (32%) and Trasylol (30%). Lidocaine (5 mM) and glucagon (10(-6)M) exhibited about 15% inhibition with minimal inhibition (7%) by nonsuppressible insulin-like activity. Study of similar inhibitors on subfractionated components indicated inhibition of cytosolar enzyme by N-ethylmaleimide (100%), glucagon (30%), chloroquine (41%), nonsuppressible insulin-like activity (30%), Lidocaine (25%), dansylcadaverine (16%), and bacitracin (11%). Incubation of ammonium sulfate-fractionated cytosolar enzyme at 37 C with A14-125I-insulin resulted in generation of two intermediate peaks as early as 1 min. These peaks could be identified by HPLC but not by molecular sieve chromatography. These intermediates exhibited less immunoprecipitability with antiinsulin antibody and receptor binding with liver membrane preparations than intact insulin. Further incubation of A14-125I-insulin with the cytosolar enzyme(s) resulted in reduction of these peaks as well as insulin and formation of 125Iodotyrosine peak. We conclude that human fibroblast is capable of metabolizing cell-associated A14-125I-insulin in a time- and temperature-dependent manner. This process is inhibited by various inhibitors of insulin processing. The bulk of IDA consists of soluble neutral protease(s) with properties similar to other more purified neutral insulin protease preparations. This fraction, similar to the intact fibroblast degrades insulin to two intermediates with similar molecular weight to that of intact insulin but with more hydrophilicity and less binding affinity to antiinsulin antibody and liver membrane than intact insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.