Abstract

Management of insects that cause economic damage to yields of soybean mainly rely on insecticide applications. Sources of resistance in soybean plant introductions (PIs) to different insect pests have been reported, and some of these sources, like for the soybean aphid (SBA), have been used to develop resistant soybean cultivars. With the availability of SoySNP50K and the statistical power of genome-wide association studies, we integrated phenotypic data for beet armyworm, Mexican bean beetle (MBB), potato leafhopper (PLH), SBA, soybean looper (SBL), velvetbean caterpillar (VBC), and chewing damage caused by unspecified insects for a comprehensive understanding of insect resistance in the United States Department of Agriculture Soybean Germplasm Collection. We identified significant single nucleotide (SNP) polymorphic markers for MBB, PLH, SBL, and VBC, and we highlighted several leucine-rich repeat-containing genes and myeloblastosis transcription factors within the high linkage disequilibrium region surrounding significant SNP markers. Specifically for soybean resistance to PLH, we found the PLH locus is close but distinct to a locus for soybean pubescence density on chromosome 12. The results provide genetic support that pubescence density may not directly link to PLH resistance. This study offers a novel insight of soybean resistance to four insect pests and reviews resistance mapping studies for major soybean insects.

Highlights

  • Insect damage is one of the major limiting factors for soybean (Glycine max (L.) Merr.) production as insects vector viruses and cause damage by feeding on foliage, vascular sap, stems, roots, pods, and seeds (Steffey, 2015)

  • Based on the Bayesian information criterion (BIC)-based model selection, no principal components (PCs) was included in the mixed linear model (MLM) for any case except for BAW that used three PCs

  • We report mapping results for the first time for soybean resistance to Mexican bean beetle (MBB) and velvetbean caterpillar (VBC) located on chr 11 and 18, respectively

Read more

Summary

Introduction

Insect damage is one of the major limiting factors for soybean (Glycine max (L.) Merr.) production as insects vector viruses and cause damage by feeding on foliage, vascular sap, stems, roots, pods, and seeds (Steffey, 2015). Insecticide usage increased in response to soybean aphid (SBA, Aphis glycines Matsumura) dissemination in the north central region of the USA (Coupe and Capel, 2015), where 80% of soybean production occurs. Insect damage devastated production in the southern parts of the USA where 234 million dollars of soybean losses were reported. GWAS Identifies Soybean Insect Resistance despite investing 279 million dollars on insect management (Musser et al, 2016; Ortega et al, 2016). Soybean is one of the most important field crops for providing dietary protein and oil worldwide, and it is estimated that a 50% increase in soybean production is needed to meet the population expansion by 2030 (Hartman et al, 2011; Ainsworth et al, 2012). Characterization of novel resistance to different insects may be essential to sustain soybean productivity

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.