Abstract

Natural or synthetic Toll-like receptor (TLR) ligands trigger innate responses by interacting with distinct TLRs. TLR ligands can thus serve as vaccine adjuvants or stand-alone antimicrobial agents. One of the limitations of TLR ligands for clinical application is their short half-life and rapid clearance from the body. In the current study, encapsulation of selected TLR ligands in biodegradable poly(D,L-lactide-co-glycolide) polymer nanoparticles (PLGA NPs) was examined in vitro and in vivo as a means to prolong innate responses. MQ-NCSU cells (a chicken macrophage cell line) were treated with encapsulated or soluble forms of TLR ligands and the resulting innate responses were evaluated. In most cases, encapsulated forms of TLR ligands (CpG ODN 2007, lipopolysaccharide and Pam3CSK4) induced comparable or higher levels of nitric oxide and cytokine gene expression in macrophages, compared to the soluble forms. Encapsulated CpG ODN, in particular the higher dose, induced significantly higher expression of interferon (IFN)-γ and IFN-β until at least 18 hr post-treatment. Cytokine expression by splenocytes was also examined in chickens receiving encapsulated or soluble forms of lipopolysaccharide (a potent inflammatory cytokine inducer in chickens) by intramuscular injection. Encapsulated LPS induced more sustained innate responses characterized by higher expression of IFN-γ and IL-1β until up to 96 hr. The ability of TLR ligands encapsulated in polymeric nanoparticles to maintain prolonged innate responses indicates that this controlled-release system can extend the use of TLR ligands as vaccine adjuvants or as stand-alone prophylactic agents against pathogens.

Highlights

  • Cells of the innate system such as macrophages and dendritic cells rely on pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) [1]

  • Toll-like receptor (TLR) ligands were encapsulated in PLGA NPs and characterized for their physical properties and sterilized with γ-irradiation for in vitro and in vivo studies

  • PLGA NPs formulations have been tested as delivery systems for TLR ligands to improve the quantity, quality and duration of immune responses induced by vaccine antigens [18,20]

Read more

Summary

Introduction

Cells of the innate system such as macrophages and dendritic cells rely on pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) [1]. Toll-like receptors (TLRs) are the most widely studied class of PRRs [2], which recognize different classes of natural TLR ligands representing microbial structural components [2,3] and synthetic. Innate Responses by PLGA Encapsulated- and Soluble TLR Ligands

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.