Abstract

To understand the effect of lipid degradation on Maillard formation of meaty flavors, initial reaction intermediates in model systems of glucose–glutathione with hexanal, (E)-2-heptenal, or (E,E)-2,4-decadienal were identified by HPLC–MS and by NMR. Besides Amadori compounds, hemiacetals and thiazolidines via addition of sulfhydryl to carbonyl or to the conjugated olefinic bond were found. Concentrations of all intermediates increased with reaction time while degradation of the intermediates with a glutathione moiety helped formation of thiazolidines with cysteinylglycine. The unsaturated aldehydes (E)-2-heptenal and (E,E)-2,4-decadienal exhibited high reactivity against glucose for glutathione, yielding higher levels of intermediate compounds than from glucose. Heating prepared intermediates reversibly released the original aldehydes, which caused various compounds formed by retro-aldol, oxidation, etc. to react with H2S and NH3. Among them, formation pathways including 3-nonen-2-one, 2-hexanoylfuran, and six dialkylthiophenes (e.g., 2-ethyl-5-(1-methylbutyl)thiophene) were proposed for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.