Abstract

Methylenedioxypyrovalerone (MDPV) has emerged in recent years as a recreational substance with psychostimulant properties. In this study, in vitro metabolites of MDPV were characterized based on liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/QTOF MS). MDPV was incubated with human liver microsomes, human recombinant cDNA-expressed cytochrome P450 enzymes and flavin monooxygenase (FMO). MDPV was metabolized to yield eight metabolites (M1-M8) with major metabolic reactions such as demethylenation and oxidation. Among them, M6 was assigned as an N-oxide metabolite. FMO was found to be a principal enzyme responsible for the formation of M6; FMO1 and FMO3 were the main enzymes involved in N-oxidation of MDPV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call