Abstract

The numerical simulation is performed for the damage induced acoustic emission and the wave propagation event of composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a predictable damage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The numerical experiment is also conducted for simulating the full procedures from the impact phenomenon to the damage induced acoustic emission wave. The numerically reproduced wave signal is transformed by wavelet transform to analyze the frequency and the resolution characteristics between the acoustic emission signals of various damage mechanisms. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the high performance computing (HPC) technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call