Abstract

A 6.2 m high immature bamboo (Phyllostachys nigra) was divided into seven fractions. The bamboo cell walls and lignin samples from young to old were characterized by 1H-13C correlation heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy both qualitatively and semiquantitatively. Mature bamboo and bamboo shoot samples were used as comparison references. HSQC-NMR analysis proved that cellulose and arabinoxylan have already deposited in bamboo shoot, and cellulose amount increased during growth. Lignin side chain linkage formation started from β-ether (β-O-4), then phenylcoumaran (β-5), and finally resinol (β-β). Ferulic acid and p-coumaric acid (pCA) were formed at the earlier stages in the immature bamboo, and the pCA proportion decreased throughout the lignification process. We propose that the bamboo lignification process is distinct from both woody and other herbaceous plants, where syringyl units deposited at the early stage and polymerized with the β-O-4 linkage. Then guaiacyl units formed gradually, and finally, p-hydroxyphenyl units formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.