Abstract

The development of the tyrosine kinase inhibitor Imatinib (IM) represents a milestone in CML (Chronic Myeloid Leukemia) treatment. However, it is not curative and patients develop IM resistance. IM resistance has been previously correlated with the emergence of drug-resistant LIC/LSC (Leukemia Initiating Cell/Leukemia Stem Cell) and increased nuclear catenin levels and enhanced Wnt signaling. It has been demonstrated previously that drug resistant CML LIC/LSC can be safely eliminated both in vitro and in vivo via disruption of the CBP/catenin interaction, utilizing the highly biochemically selective small molecule CBP/catenin antagonist ICG- 001. Here, we utilized an in vitro IM selection of primary CML patients' samples to identify drug-resistant LIC/LSC populations. In this report, we characterized the drug-resistant CML LIC/LSC population using FACS, Smartchip qPCR and colony assays to analyze cell surface markers, transcriptomics and function. As opposed to previous characterization of the CML leukemic stem cell population as being either CD34+CD38- or CD34+CD38+, the in vitro selected Imatinib resistant (IM-R) CML LSC population was consistently CD34-CD38-. In Long-Term Culture Initiating Cell assay (LTC-IC, a surrogate assay for long term repopulating stem cells), our results suggest that the CBP/catenin antagonist ICG- 001 sensitizes LIC/LSC to IM treatment by forced differentiative elimination of the CML LIC/LSC population. In vitro selected IM resistant cells are negative for both CD34 and CD38 by FACS analysis. These cells acquire CD34/CD38 expression after co-culture with stromal cells. CBP/catenin antagonist ICG-001 facilitates IM function in eliminating these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call