Abstract
Abstract We report the imaging characteristics of the recently developed large-area complementary metal-oxide-semiconductor (CMOS) active-pixel detector for low-energy digital X-ray imaging applications. The detector consists of a scintillator to convert X-ray into light and a photodiode pixel array made by the CMOS fabrication process to convert light into charge signals. Between two layers, we introduce a fiber-optic faceplate (FOP) to avoid direct absorption of X-ray photons in the photodiode array. A single pixel is composed of a photodiode and three transistors, and the pixel pitch is 96 μm. The imaging characteristics of the detector have been investigated in terms of modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). From the measured results, the MTF at the Nyquist frequency is about 20% and the DQE around zero-spatial frequency is about 40%. Simple cascaded linear-systems analysis has showed that the FOP prevents direct absorption of X-ray photons within the CMOS photodiode array, leading to a lower NPS and consequently improved DQE especially at high spatial frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.