Abstract

Hydrothermal carbonization of cellulose, lignin, d-xylose (substitute for hemicellulose), and wood meal (WM) was experimentally conducted between 225 and 265 °C, and the chemical and structural properties of the hydrochars were investigated. The hydrochar yield is between 45 and 60%, and the yield trend of the feedstock is lignin > WM > cellulose > d-xylose. The hydrochars seem stable below 300 °C, and aromatic structure is formed in all of these hydrochars. The C content, C recovery, energy recovery, ratio of C/O, and ratio of C/H in all of these hydrochars are among 63–75%, 80–87%, 78–89%, 2.3–4.1, and 12–15, respectively. The higher heating value (HHV) of the hydrochars is among 24–30 MJ/kg, with an increase of 45–91% compared with the corresponding feedstock. The carbonization mechanism is proposed, and furfural is found to be an important intermediate product during d-xylose hydrochar production, while lignin hydrothermal carbonization products are made of polyaromatic hydrochar and phenolic hydrocha...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.