Abstract

Background: Hydroxyapatite, which is naturally and synthetically available, is often used as a biomaterial because of its similarity to bone. Aim: In this study, Natural hydroxyapatite powder, synthesized from sheep bone, and synthetic hydroxyapatite were used as matrix. Materials and Methods: Hybrid bio-ceramic composites were obtained by adding 5 wt. % expanded perlite-TiO2-ZrO2-MgO-P2O5 to both matrixes. The bio-ceramic materials which were mixed with mechanical mixer for 30 minutes were pressed with hydraulic press under 25 MPa pressure and sintered at 900°C for 1 hour. Density, micro-hardness, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) analysis were performed to determine characteristics of the samples. Results: As a result, it was identified that the micro-hardness of natural hydroxyapatite was higher. In addition, the increase in micro-hardness values of ZrO2-reinforced samples was higher than the TiO2-reinforced samples. Conclusion: Hydroxyapatite, calcium silicate, calcium phosphate structures were observed in XRD analysis. Micro-pores were observed in TiO2-reinforced samples while more dense structures were observed in ZrO2-reinforced samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.