Abstract

The bHLH (basic helix-loop-helix) PAS (Per/Arnt/Sim) transcription factor SIM1 (single-minded 1) is important for development and function of regions of the hypothalamus that regulate energy homoeostasis and the feeding response. Low-activity SIM1 variants have been identified in individuals with severe early-onset obesity, but the underlying molecular causes of impaired function are unknown. In the present study we assess a number of human SIM1 variants with reduced activity and determine that impaired function is frequently due to defects in dimerization with the essential partner protein ARNT2 (aryl hydrocarbon nuclear translocator 2). Equivalent variants generated in the highly related protein SIM2 (single-minded 2) produce near-identical impaired function and dimerization defects, indicating that these effects are not unique to the structure of SIM1. On the basis of these data, we predict that other select SIM1 and SIM2 variants reported in human genomic databases will also be deficient in activity, and identify two new low-activity SIM1 variants (V290E and V326F) present in the population. The cumulative data is used in homology modelling to make novel observations about the dimerization interface between the PAS domains of SIM1 and ARNT2, and to define a mutational 'hot-spot' in SIM1 that is critical for protein function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.