Abstract

A monoclonal antibody, 5H4, that recognizes human herpesvirus 7 (HHV-7) was used in Western analysis to probe HHV-7-infected SupT1 cells. This antibody recognizes a 40-kDa virus-specific polypeptide that is expressed in the absence of viral DNA synthesis. By screening a λgt11 HHV-7 cDNA library, the gene encoding the protein was identified as the U27 open reading frame previously reported [J. Virol. (1996) 70, 5975–5989]. Immunofluorescent studies showed a punctate nuclear localization of the protein in both HHV-7-infected cells and transfected cells. A computer program predicted two classic nuclear localization signals (NLSs) in the middle and C-terminal regions of the protein. A C-terminal deletion mutant of the protein could not enter the nucleus, whereas green fluorescent protein or maltose binding protein fused to the C-terminal region of the protein was transported into the nucleus. These findings demonstrate that the predicted C-terminal, but not middle, NLS of the protein actually function as NLS. In addition, nuclear transport of a maltose binding protein-fusion protein containing the C-terminal NLS of the U27 protein was inhibited by both wheat germ agglutinin and a Q69L Ran-GTP mutant, indicating that the U27 protein is transported into the nucleus from the cytoplasm by means of classic nuclear transport machinery. Interestingly, this NLS motif is highly conserved at the C-termini of all herpesvirus DNA polymerase processivity factors that have been examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.