Abstract
Understanding the molecular mechanisms of influenza virus resistance to neuraminidase inhibitors is a main concern for their clinical use. In an attempt to reproduce in vivo selective conditions where influenza virus resistance to neuraminidase inhibitors can occur the zanamivir selection of an A/H1N1 influenza virus strain was carried out in Madin-Darby canine kidney cells performed in the presence or absence of sialic acid-containing inhibitor analogues that act as virus decoy receptors. The zanamivir-selected variants passaged in the presence of sialic acid-containing molecules resembling the human-like virus receptor lost the ability to bind red blood cells. Furthermore, whereas all zanamivir-selected variants exhibited a robust reduction in susceptibility to zanamivir in plaque assays only those obtained after extensive passages acquired a powerful neuraminidase enzyme resistance to zanamivir and oseltamivir. Evidence that balanced neuraminidase and hemagglutinin activities mediated by mutations induced during selection could play a role in the decrease of virus replication susceptibility to zanamivir is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.