Abstract

Oxidative bioactivation of amodiaquine (AQ) by cytochrome P450s to a reactive quinoneimine is considered as an important mechanism underlying its idiosyncratic hepatotoxicity. However, because internal exposure to its major metabolite N-desethylamodiaquine (DEAQ) is up to 240-fold higher than AQ, bioactivation of DEAQ might significantly contribute to covalent binding. The aim of the present study was to compare the kinetics of bioactivation of AQ and DEAQ by human liver microsomes (HLM) and to characterize the CYPs involved in bioactivation of AQ and DEAQ. Glutathione was used to trap reactive metabolites formed in incubations of AQ and DEAQ with HLM and recombinant human cytochrome P450s (hCYPs). Kinetics of bioactivation of AQ and DEAQ in HLM and involvement of hCYPs were characterized by measuring corresponding glutathione conjugates (AQ-SG and DEAQ-SG) using a high-performance liquid chromatography method. Bioactivation of AQ and DEAQ in HLM both exhibited Michaelis-Menten kinetics. For AQ bioactivation, enzyme kinetical parameters were Km , 11.5±2.0μmoll-1 , Vmax , 59.2±3.2pmolmin-1 mg-1 and CLint , 5.15μlmin-1 mg-1 . For DEAQ, parameters for bioactivation were Km , 6.1±1.3μmoll-1 , Vmax , 5.5±0.4pmolmin-1 mg-1 and CLint 0.90μlmin-1 mg-1 . Recombinant hCYPs and inhibition studies with HLM showed involvement of CYP3A4, CYP2C8, CYP2C9 and CYP2D6 in bioactivation. The major metabolite DEAQ is likely to be quantitatively more important than AQ with respect to hepatic exposure to reactive metabolites in vivo. High expression of CYP3A4, CYP2C8, CYP2C9, and CYP2D6 may be risk factors for hepatotoxicity caused by AQ-therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.