Abstract

Human C4a anaphylatoxin was isolated from a Cls digest of the fourth component of complement. Isolation required a two-step procedure involving ion-exchange chromatography on CM-Sephadex C-50 and gel filtration on Sephadex G-50. Characterization of C4a indicated it is a highly cationic polypeptide (pI = 9.0-9.5) containing 77 residues with Mr = 8,759. C4a is devoid of tryptophan, histidine, and carbohydrate. Judged by the shape and magnitude of its circular dichroism spectrum, 54% of the polypeptide backbone of C4a assumes an alpha-helical conformation. Partial NH2-terminal sequence determination of C4a revealed a sequence identical with that published by Bolotin et al. (Bolotin, C., Morris, S., Tack, B., and Prahl, J. (1977) Biochemistry 16, 2008-2015) for the NH2 terminus of the alpha-subunit of human C4. Comparison of the NH2-terminal sequence of C4a with the sequences of complement activation fragments C3a (Hugli, T.E. (1975) J. Biol. Chem. 250, 8293-8301) and C5a (Fernandez, H.N., and Hugli, T.E. (1978) J. Biol. Chem, 253-6955-6962) showed that of the first 24 NH2-terminal residues of C4a, 6 were identical with those of C3a (25% homology) and 8 were identical with those of C5a (33% homology). These data represent the first chemical evidence for the existence of an evolutionary relationship among anaphylatoxins C3a, C4a, and C5a, and imply that a similar relationship exists among their precursor proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.