Abstract

Composites of hydroxyapatite and polymers are widely studied for bone replacement. To perform satisfactorily in the human body, these composites need to be biocompatible and exhibit optimum mechanical properties. The load-deformation behavior of composites is often investigated using experimental techniques. However, the molecular mechanisms of load deformation behavior are not clearly understood. We have used Steered Molecular Dynamics to evaluate the load-deformation behavior at interfaces in polyacrylic acid-hydroxyapatite (HAP) composite models. The polymer is pulled at constant velocity in close proximity of HAP. On comparing the results obtained for deformation behavior of polymer in vicinity of mineral and in the absence of mineral, it was found that energy required to pull the polymer in close proximity of HAP is significantly higher. Also, structural details of the load transfer mechanisms in composite were investigated under both conditions. Our simulations indicate that there is a significant role of mineral-polymer interactions on the mechanical response of polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call