Abstract

We have utilized patch clamp recording techniques to identify a high-conductance anion channel in the plasma membrane of rat bile duct epithelial cells. Cells were isolated from the intrahepatic bile duct 2-6 wk after bile duct ligation. Channels were present in 27% (28/102) of excised patches, and, with 150 mM Cl- in bath and pipette solutions, the slope conductance of the fully open level was approximately 364 +/- 18 pS (n = 8) with current reversal = 0 +/- 1 mV. Channel characteristics were not affected by substitution of K+ for Na+ in the pipette solution; but substitution of HCO3-, gluconate, or increased NaCl caused a shift in the reversal potential toward the new equilibrium potential for Cl-. The permeability ratios were PHCO3-/PCl- = 0.51 +/- 0.03 (n = 5), Pgluconate/PCl- = 0.12 +/- 0.04 (n = 7), and PNa+/PCl- = 0.11 +/- 0.02 (n = 3). Current transitions to a subconductance level at 72% of the fully open level were present in most studies. Channel open probability was greatest near 0 mV and decreased rapidly outside of -20 to +20 mV because of voltage-dependent channel closure. The time course for current relaxation of summed single channel currents could be described by a single exponential with more rapid channel closure as the magnitude of the voltage step away from 0 mV increased. In the cell-attached configuration, the channel was rarely open (4/35, 11%) but opening could be induced by negative pipette pressure (5/14, 35%). Possible physiological roles for this channel are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.