Abstract

A common way to model lithium-ion batteries is to apply equivalent circuit (EC) models. In this work two different EC models are build up and parameterized for a commercial 6.5 Ah high-power lithium-ion cell. Measured impedance spectroscopy data depending on temperature and state of charge (SOC) are used for parameter estimation. The first EC model consists of an ohmic resistor (R), an inductor (L) and three RC-elements (a parallel connection of a capacitor (C) and a resistor). The second EC model consists of one R, one L, two Zarc elements and a Warburg element. The estimated parameters were used to develop two empirical electrical cell models which are able to predict the voltage of the cells depending on current, temperature and SOC. Hereby the internal cell resistance Ri is based on the EC models and a Butler–Volmer adjustment. Both approaches were validated by current profiles, which cover typical automotive applications to prove the model performance at low temperatures and high dynamic operation. An accurate voltage prediction could be realized with both EC models. The second, more complex, model is able to predict cell voltage more precisely, but at the expense of up to four times higher computational effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call