Abstract

The characteristics of [3H]ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. [3H]Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific [3H]ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for [3H]ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal [3H]ouabain binding was examined. Kainic acid lesions of the striatum reduced [3H]ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the "high-affinity" [3H]ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of [3H]ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.