Abstract

AbstractHfO2-based materials are the leading candidates to replace SiO2 as the gate dielectric in Si-based metal-oxide-semiconductor filed-effect transistors. The ubiquitous presence of water vapor in the environments to which the dielectric films are exposed (e.g. in environmental air) leads to questions about how water could affect the properties of the dielectric/Si structures. In order to investigate this topic, HfO2/SiO2/Si(001) thin film structures were exposed at room temperature to water vapor isotopically enriched in 2H and 18O followed by quantification and profiling of these nuclides by nuclear reaction analysis. We showed i) the formation of strongly bonded hydroxyls at the HfO2 surface; ii) room temperature migration of oxygen and water-derived oxygenous species through the HfO2 films, indicating that HfO2 is a weak diffusion barrier for these oxidizing species; iii) hydrogenous, water-derived species attachment to the SiO2 interlayer, resulting in detrimental hydrogenous defects therein. Consequences of these results to HfO2-based metal-oxide-semiconductor devices are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.