Abstract

The thickness and interfacial geometry of hexagonal boron nitride (hBN) films grown by chemical vapor deposition on polycrystalline nickel foils is studied using low-energy electron microscopy (LEEM). The reflectivity of the electrons, measured over an energy range of 0–20eV, reveals distinct minima and maxima. The measured data is compared with simulations based on a first-principles description of the electronic structure of the material. From this comparison, the number of hBN layers and the separation between the lowest hBN layer and the nickel surface is deduced. The coupling of interlayer states of the hBN to both image-potential and Shockley-type surface states of the nickel is discussed, and the dependence of the reflectivity spectra on the surface orientation of nickel grains is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.