Abstract

The heterogeneous associating behavior of the aqueous binary mixtures of ethyl alcohol, ethylene glycol, glycerol and mono alkyl ethers of ethylene glycol, and aqueous ternary mixtures of equi-molar binary systems (i.e., mono alkyl ethers of ethylene glycol with ethyl alcohol, ethylene glycol and glycerol) have been investigated over the entire concentration range using accurately measured dielectric constants at 25 ∘C. The concentration dependent values of the excess dielectric parameter eE and effective Kirkwood correlation factor geff were determined using the measured values of the static dielectric constant, eo, at 1 MHz and the high frequency limiting dielectric constant e∞ = nD2. The observed eE values in aqueous binary and ternary mixtures are negative over the entire concentration range, which implies the formation of heterogeneous complexes between these molecules that reduces the effective number of dipoles. The stoichiometric ratio corresponding to the maximum interaction in alcohol + water mixtures increases with an increase in the number of hydroxyl groups of the alcohol molecules, but for mono alkyl ethers of ethylene glycol + water mixtures it decreases with the increase in the molecular size of the mono alkyl ethers. In aqueous ternary mixtures the stoichiometric ratio for the maximum extent of heterogeneous interaction is governed by the molecular size of the mono alkyl ethers. It was also found that the strength of the heterogeneous H–bond connectivities in the water + alcohol systems decrease with an increase in the number of hydroxyl groups of the alcohol molecules. However in the case of water + mono alkyl ether binary mixtures and in ternary mixtures, the strength of H–bond connectivities increases with the increase in the molecular size of the mono alkyl ether. An analysis of the geff values confirms that the heterogeneous interaction involves the orientation of molecular dipoles in the studied systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.