Abstract

Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. With the widespread use of pyraclostrobin to prevent and control crop diseases, its environmental pressure and potential safety risks to humans have attracted much attention. Herein, the toxicological risks of pyraclostrobin toward HepG2 cells and the mechanisms of intoxication in vitro were investigated. The liver toxicity of pyraclostrobin in zebrafish larvae was also evaluated. It was found that pyraclostrobin induced DNA damage and reactive oxygen species generation in HepG2 cells, indicating the potential genotoxicity of pyraclostrobin. The results of fluorescent staining experiments and the expression of cytochrome c, Bcl-2 and Bax demonstrated that pyraclostrobin induced mitochondrial dysfunction, resulting in cell apoptosis. Monodansylcadaverine staining and autophagy marker-related proteins LC3, p62, Beclin-1 protein expression showed that pyraclostrobin promoted cell autophagy. Furthermore, immunoblotting analysis suggested that pyraclostrobin induced autophagy accompanied with activation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/mTOR signaling pathway. Visualization of zebrafish liver and oil red staining indicated that pyraclostrobin could induce liver degeneration and liver steatosis in zebrafish. Collectively, these results help to better understand the hepatotoxicity of pyraclostrobin and provide a scientific basis for its safe applications and risk control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call