Abstract
The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a core-NS2, we exchanged E2 with functional isolate sequences of genotypes 1a (alternative isolate), 1b, and 2a. While the 1a-E2 exchange did not impact virus viability, the 2a-E2 recombinant was nonviable. After E2 exchange from three 1b isolates, long delays were observed before spread of infection. For recovered 1b-E2 recombinants, single E2 stem region amino acid changes were identified at residues 706, 707, and 710. In reverse genetic studies, these mutations increased infectivity titers by ~100-fold, apparently without influencing particle stability or cell binding although introducing slight decrease in particle density. In addition, the 1b-E2 exchange led to a decrease in secreted core protein of 25 to 50%, which was further reduced by the E2 stem region mutations. These findings indicated that compensatory mutations permitted robust infectious virus production, without increasing assembly/release. Studies of E1/E2 heterodimerization showed no differences in intracellular E1/E2 interaction for chimeric constructs with or without E2 stem region mutations. Interestingly, the E2 stem region mutations allowed efficient entry, which was verified in 1a-E1/1b-E2 HCV pseudoparticle assays. A CD81 inhibition assay indicated that the mutations influenced a late step of the HCV entry pathway. Overall, this study identified specific amino acids in the E2 stem region of importance for HCV entry and for production of infectious virus particles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.