Abstract
A stationary surface wave discharge is studied in helium gas at intermediate pressure. By optical emission spectroscopy, rotational temperatures derived from impurities molecular bands have been studied, as well as the excitation temperature from the Boltzmann plot method of helium lines, as a function of gas pressure, absorbed power and axial position. The rotational temperature of OH molecules is supposed to be in thermal equilibrium with the plasma gas and is used for determining its temperature. The influence of the tube diameter has also been studied; it was observed that the tubes with smaller diameter lead to higher gas temperature. By optical absorption spectroscopy, the density of metastable atoms (in 23s level) has been studied as a function of the parameters. An important dependence on the gas pressure has been observed. Indeed, a one order of magnitude reduction is obtained when the pressure increases from 5 to 50 Torr. The density of metastable atoms remains constant as a function of power and almost all along the plasma column. Finally, a collisional-radiative model was used to compare the experimental to the theoretical results of the density of metastable atoms providing at the same time estimations of the density and the temperature of the electrons as well as the density of helium (atomic and molecular) ions. Results showed a good agreement when the tube diameter is large, but for smaller tubes, the agreement was obtained only for the higher gas pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.