Abstract

The propagation of helicon waves and the plasma density has been measured in a cylindrical, magnetized plasma for a range of magnetic fields and input power levels. A transition in the coupling mechanism from electrostatic (E mode) to inductive (H mode) coupling is evidenced by a sharp change in the plasma density coinciding with a change in the wave fields from a linearly polarized standing wave, with highest amplitude close to the antenna to a right-hand elliptically polarized traveling wave with a phase velocity of about 6×106 m/s extending into the downstream region. An explanation of the transition to the H mode is put forward in terms of the conductivity across the magnetic field and an associated skin depth for power deposition. The polarization of the wave fields in the H mode is interpreted in terms of the interference between m=+1 and −1 modes (where m is the azimuthal mode number).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.