Abstract

Heat-labile uracil-DNA glycosylase (HL-UDG) is commonly employed to eliminate carry-over contamination in DNA amplifications. However, the prevailing HL-UDG is markedly inactivated at 50°C, rendering it unsuitable for specific one-step RT-qPCR protocols utilizing reverse transcriptase at an optimal temperature of 42°C. This study aimed to explore novel HL-UDG with lower inactivation temperature and for recombinant expression. The gene encoding an HL-UDG was cloned from the cold-water fish rainbow trout (Oncorhynchus mykiss) and expressed in Escherichia coli with high yield. The thermostability of the enzyme and other enzymatic characteristics were thoroughly examined. The novel HL-UDG was then applied for controlling carry-over contamination in one-step RT-qPCR. This recombinantly expressed truncated HL-UDG of rainbow trout (OmUDG) exhibited high amino acids similarity (84.1% identity) to recombinant Atlantic cod UDG (rcUDG) and was easily denatured at 40°C. The optimal pH of OmUDG was 8.0, and the optimal concentrations of both Na+ and K+ were 10 mM. Since its inactivation temperature was lower than that of rcUDG, the OmUDG could be used to eliminate carry-over contamination in one-step RT-qPCR with moderate reverse transcription temperature. We successfully identified and recombinantly expressed a novel HL-UDG with an inactivation temperature of 40°C. It is suitable for eliminating carry-over contamination in one-step RT-qPCR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call