Abstract

Disposable shaking bioreactors are a promising alternative to other disposable bioreactors owing to their ease of operation, flexibility, defined hydrodynamics and characterization. Shaken bioreactors of sizes 20L and 50L are characterized in terms of heat transfer characteristics in this research work. Water and an 80% glycerol–water system were used as fluid. Results indicated large heat generation due to shake mixing which was observed by temperature difference between the fluid inside the vessel and the surrounding air outside the vessel. Maximum temperature difference of ca. 30K was encountered for a 50L vessel, at 300rpm and 20L filling volume. Outside heat transfer rate was governing the overall heat transfer process. Lateral air flow did increase heat transfer rates to large extent. An empirical correlation of overall heat transfer coefficient was obtained in terms of filling volume, rotational speed and lateral air flow rate. However, as the vessel thickness increased, the overall heat transfer process was limited by vessel wall resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call