Abstract

Nominally undoped, hydrothermally grown ZnO single crystals have been investigated before and after exposure to remote H-plasma. Defect characterization has been made by two complementary techniques of positron annihilation: positron lifetime spectroscopy and coincidence Doppler broadening. The high-momentum parts of the annihilation photon momentum distribution have been calculated from first principles in order to assist in defect identification. The positron annihilation results are supplemented by Atomic Force Microscopy for characterization of the crystal surface. It was found that virgin ZnO crystal contains Zn-vacancies associated with hydrogen. H-plasma treatment causes a significant reduction in concentration of these complexes. Physical mechanism of this effect is discussed in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.