Abstract

The proton and Cd binding capacities of microbially produced exopolysaccharides, EPS, were quantified by the determination of stability constants and the concentration of complexing sites using H + or Cd 2+ selective electrodes in dynamic titrations. The influence of ionic strength, pH and the Cd to EPS ratio was evaluated over large concentration ranges. The applicability of the non-ideal competitive adsorption isotherm combined with a Donnan electrostatics approach was tested with respect to the EPS. Proton and cadmium binding data were compared with literature data examining other ubiquitous environmental ligands including humic substances, alginate, bacteria, etc. Subsequent modelling of Cd speciation in aquatic (fresh and marine waters) and soil systems suggested that the exopolysaccharides would play non-negligible role, under most conditions. The quantitative information provided in this paper thus represents an important advance in our understanding of Cd transport, bioavailability and impact in aquatic and terrestrial systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.