Abstract

Summary Ground parenchyma cells play a crucial role in the growth and the mechanical properties of bamboo plants. Investigation of the morphology of ground parenchyma cells is essential for understanding the physiological functions and mechanical properties of these cells. This study aimed to characterize the anatomical structure of bamboo ground parenchyma cells and provide a qualitative and quantitative basis for the more effective utilization of bamboo. To do this, the morphology of ground parenchyma cells in Moso bamboo (Phyllostachys edulis) was studied using light microscopy and field-emission environmental scanning electron microscopy. Results show that various geometric shapes of ground parenchyma cells were observed, including nearly circular, square, long, oval, and irregular shapes. Cell walls of both long and short parenchyma cells exhibited primary wall thickening and secondary wall thickening, resulting in a primary pit field and simple pits. Most long cells were strip-shaped (L/W = 2.52), while most short cells were short and wide (L/W = 0.59). The proportion of long cells was 11 times greater than that of short cells. Most long cells were filled with starch grains, and some short cells also occasionally had starch grains. These findings allowed the first construction of the three-dimensional structure of parenchyma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call