Abstract
This study investigates the green synthesis of carbon quantum dots (CQDs) from spent coffee grounds using a hydrothermal method, offering an eco-friendly, cost-effective, and straightforward approach to nanomaterial production. The synthesized CQDs, with particle sizes ranging from 1.6 to 4.4 nm, exhibited notable fluorescence, achieving quantum yields of 37.0 %, 54.3 %, and 63.3 % depending on the coffee source. Characterization technique, including XRD, FTIR, SEM, TEM, and BET, confirmed their structural suitability of these CQDs for energy storage applications. Their electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the CQDs tested, those derived from spent Liberica coffee ground (medium roasted) demonstrated superior performance, with a discharging specific capacitance of 97.5 F/g, an energy density of 4.3 Wh/kg, and a power density of 130.6 W/kg at a current density of 0.5 A/g. Additionally, they exhibited acceptable internal resistance (Ra = 0.01 kΩ and Rab = 16.9 kΩ), indicating favourable charge transfer characteristics. These results underscore the enhanced energy storage potential of CQDs derived from spent coffee grounds. The findings not only highlight the excellent electrochemical performance but also support the viability of biomass waste as a valuable resource for advanced energy storage applications, promoting sustainable, eco-friendly technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.