Abstract
AbstractGravity waves, which are considered omnipresent in the Earth's upper atmosphere, are generally investigated by monitoring the fluctuations in different atmospheric parameters. Here, we report the propagation characteristics of thermospheric gravity waves both in horizontal and vertical directions obtained using collocated optical and radio measurements from Ahmedabad, India for February 2021. The measurements of OI 630.0 nm dayglow emission rates over zenith are used to derive time periods of gravity waves. Wave number analyses of variations in the emission over a large field‐of‐view have been performed to derive gravity wave scale sizes and propagation characteristics in the horizontal direction. Time periods, horizontal scale sizes, and propagation directions are found to be in the range of 31–125 min, 78–243 km, and 203°–248° from east, respectively. Vertical wavelengths of the gravity waves are obtained from radio measurements and are in the range of 26–247 km. As the gravity wave characteristics are influenced by the ambient neutral winds, the measured gravity wave propagation characteristics in three dimensions have been used as inputs into the gravity wave dispersion relation to estimate the magnitudes of thermospheric horizontal neutral winds. These estimated daytime winds in the direction of wave propagation are found to be in the range of 1–105 ms−1, and they compare well with those measured independently from MIGHTI added HWM14 model‐derived winds. The daytime winds estimated by this approach are possibly the first of their kind as obtained from ground‐based measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.